College Algebra	Name:
Study Guide 8	Class:
Due Date:	Score:

No Work \Leftrightarrow No Points

Use Pencil Only \Leftrightarrow Be Neat & Organized

Given f(x) = 2x - 5 and g(x) = 2x + 5, find
 (a) (2 points) (f · g)(x)

(b) (2 points) $(f \circ g)(x)$

(b) (2 points) $(g \circ f)(x)$

(a) _____

(b) _____

2. Given $f(x) = \frac{2}{3}x + 4$ and $g(x) = \frac{3}{2}x - 6$, find (a) (2 points) $(f \circ g)(x)$

(a) _____

(b) _____

3. Find the inverse of the following functions:

(a) (2 points) f(x) = 2x - 5

(b)	(2 points)	$f(x) = \frac{1}{2}x + 3$	(a)
(c)	(3 points)	$f(x) = \sqrt{x-3}$	(b)
(d)	(3 points)	$f(x) = \sqrt[3]{x+4}$	(c)
(e)	(3 points)	$f(x) = x^2 - 4, x \ge 0$	(d)
(f)	(4 points)	$f(x) = \sqrt{x+1} - 2$	(e)
			(f)

4. (5 points) Consider the graph below, draw its inverse if it exists, then complete the chart below using the interval notation.

5. (4 points) Find the inverse of $f(x) = \frac{2}{x+1}$, and then complete the chart below.

5. _____

	Domain	Range
f(x)		
$f^{-1}(x)$		

6. Express the domain of the following functions in interval notation: (a) (3 points) $f(x) = \sqrt{16 - x^2}$

(b) (3 points)
$$f(x) = \frac{x}{\sqrt[3]{x-1}}$$
 (a) ______
(c) (3 points) $f(x) = \frac{1}{x^2 + 25}$

(c) _____

7. Algebra Review Problems:
(a) (2 points) Factor 3x⁴ - 16x³ - 35x².

(a) _____

(b) (3 points) Solve $(x^2 - 25)(x^2 - 100) = 0$ by using the zero-factor theorem.

(c) (2 points) Simplify $(5x-3)^2 + (5x+3)^2$. (b)

(c) _____